中华医学会主办。
文章信息
- 李欣 钟永亮 冯友军
- LiXin,ZhongYongliang,FengYoujun
- 细菌耐药机制:内源活性氧分子的角色
- Transformation of endogenous reactive oxygen species participates into bacterial antibiotic resistance
- 中华预防医学杂志, 2018,52(4)
- http://dx.doi.org/10.3760/cma.j.issn.0253.9624.2018.04.022
-
文章历史
- 投稿日期: 2017-11-29
钟永亮 471023 洛阳,河南科技大学食品与生物工程学院
冯友军 浙江大学医学院/动物科学学院
Corresponding author: Feng Youjun, Email: fengyj@zju.edu.cn
抗生素在临床的广泛应用大大降低了人类和动物细菌感染性疾病的发病率和死亡率,但由于抗生素的不规范使用和过度使用,抗生素耐药性出现的速度越来越快,感染的预防和控制越来越难[
已发现的耐药微生物能够灵活的逃避多种结构和功能迥异的抗生素类型,在抗生素的选择性压力下细菌为了生存可通过产酶、外排泵、靶目标的改变等多种耐药机制与抗生素对抗[
本文讨论了抗生素处理诱导细菌产生氧化胁迫的机制,以及ROS在细菌耐药机制中的作用。此外,阐述了细菌间体膜囊外排H2O2从而诱导细菌耐药的新途径。对微生物药物胁迫反应和防御体系的系统性考察,将有助于找到新的抗菌策略,并为开发新的抗菌药物提供理论支持[
一、ROS的产生 在富氧环境中,有机体活细胞中ROS是作为呼吸的副产物产生的,包括超氧阴离子(O2-·)、H2O2以及高破坏性的·OH。环境中的O2能够快速扩散进入菌体,并与众多生物分子反应。O2与呼吸黄素酶等生物分子的反应对ROS的产生尤为重要。呼吸黄素酶的活性位点含有易催化的氧化还原辅因子,能够快速参与O2的电子传递反应,从而产生O2-·和H2O2。
一般认为,细胞内源ROS是主要来源于质膜或线粒体膜上的呼吸链氧化还原酶复合物。研究已显示,呼吸链能够产生生物学水平的O2-·[
二、ROS在细菌耐药中的作用 众多研究已经报道,虽然抗生素的靶目标不同,包括膜或壁的合成、蛋白质合成或DNA复制的抑制等,但几类抗生素都诱导细菌细胞中产生大量ROS[
迄今为止,已有多篇论文阐述了ROS在抗生素信号网络中的作用[
在ROS介导的抗生素诱导细菌死亡途径的共通反应机制中,由H2O2经Fenton反应转化而成的大量持续性的·OH是杀伤细胞的直接原因[
通过抗氧化系统的调控,众多研究者获得了ROS参与抗生素杀菌的进一步证据。Wang和Zhao[
综上所述,众多的研究已经开始建立胁迫对抗稳态条件过程中的细菌ROS产生机制。一方面,ROS的水平应对其在抗生素杀菌过程中的作用具有重要意义,高浓度的ROS可促进抗生素的杀菌作用,而低浓度的ROS可通过诱导细菌突变,从而产生耐药性。另一方面,研究者们已注意到,已有证据中抗生素参与最多的ROS分子是最容易从O2获得电子的O2-·和最直接损伤细胞组分的·OH,而H2O2的寿命较长,与其他关键ROS分子O2-·和·OH的转化也较为复杂,其作用很难确认。胞内ROS的组成及氧化平衡状态受SOD等抗氧化酶系、铁离子等诸多因素的调控,ROS对细菌耐药的作用是一个相当复杂的问题。
三、ROS的转化影响细菌耐药性的形成 与能够被超氧化物歧化酶及过氧化氢酶/过氧化物酶等抗氧化酶催化清除的O2-·和H2O2不同,催化·OH细胞脱毒反应的酶尚不清楚。·OH能够随机的攻击蛋白、脂质和DNA,从而具有毒性或致突变性[
正因为如此,氧化胁迫过程中,O2-·在细胞膜上由呼吸链产生,被超氧化物歧化酶歧化生成H2O2或由Haber-Weiss反应还原Fe3+。接下来H2O2通过Fenton反应氧化Fe2+从而产生·OH和Fe3+,由此建立了ROS攻击生物分子又重新产生的快速反应的氧化还原循环。由于Fe2+能够定位于DNA、蛋白和脂质,产生的·OH就可以非常接近这些生物分子,并产生毒性作用[
与其他ROS相比,H2O2是更稳定的化合物,可由O2-·歧化产生,具有细胞毒性及信号传导、调控基因表达等多种重要的生理病理功能[
Liu和Imlay等[
Liu和Imlay[
四、细菌耐药中的膜囊泡间体与H2O2 本实验室在前期工作中发现,H2O2除转化为·OH和降解为H2O外,还存在一个新的代谢途径:细菌独特的膜结构-间体,可大量聚集细胞受损时产生的H2O2,并将其外排至胞外[
其他研究者与本实验室的结果均证实,间体在细胞正常状态下并不存在,重要的细胞事件(分裂或损伤)将诱导间体形成[
本实验室之前在对大肠杆菌内源H2O2功能的研究中发现,在受抗生素损伤的细胞中具有H2O2的额外大量产生,更令人感兴趣的是,细胞中出现特有膜结构-间体的形成,成为H2O2的额外大量聚集的位点,并且能够携带聚集的大量H2O2外排出胞外(
![]() |
图1利福平处理后大肠杆菌内源H2O2积累于间体膜囊并被外排出胞外 |
![]() |
图2H2O2转化方向模式图 |
五、结论与展望 1929年,Fleming[
由于抗生素诱导产生的ROS参与细菌耐药,大量研究尝试明确ROS的功能以及抗生素处理后细胞死亡过程中的氧化胁迫反应。本实验室虽已发现间体聚集H2O2并及时外排是细菌耐药的一条新途径,但抗生素压力下大肠杆菌产生的大量H2O2如何进入间体膜囊?间体膜囊如何形成?间体参与的细菌耐药机制尚有诸多疑问亟待解决。笔者推测,抗生素诱导细菌产生大量ROS,从而达到杀菌的目的。而细菌诱导间体形成,将H2O2等ROS排出胞外,从而达到细菌耐药的目的。在一定的抗生素浓度范围内,细菌与抗生素很可能在ROS代谢中存在博弈平衡。
随着ROS参与细菌耐药机制研究的深入,未来将有可能从氧化胁迫反应的角度优化已有的抗菌策略,例如以间体为切入点可能发现打破抗生素与细菌的博弈平衡的方法,采用噬菌体基因工程过表达SoxR从而增强抗生素的致死率[
[2]WangY, ZhangR, LiJ, et al. Comprehensive resistome analysis reveals the prevalence of NDM and MCR-1 in Chinese poultry production[J]. Nat Microbiol, 2017,2:16260. DOI: 10.1038/nmicrobiol.2016.260.
[3]王秀娜,张会敏,孙坚,等.多黏菌素耐药MCR-1:公共卫生领域的新挑战[J].科学通报,2017,62(10):1018-1029.
[4]朱阵,曹明泽,张吉丽,等.细菌耐药性研究进展[J].中国畜牧兽医,2015,42(12):3371-3376. DOI: 10.16431/j.cnki.1671-7236.2015.12.038.
[5]GaoR, HuY, LiZ, et al. Dissemination and Mechanism for the MCR-1 Colistin Resistance[J]. PLoS Pathog, 2016,12(11):e1005957. DOI: 10.1371/journal.ppat.1005957.
[6]QuanJ, LiX, ChenY, et al. Prevalence of mcr-1 in Escherichia coli and Klebsiella pneumoniae recovered from bloodstream infections in China: a multicentre longitudinal study[J]. Lancet Infect Dis, 2017,17(4):400-410. DOI: 10.1016/S1473-3099(16)30528-X.
[7]简心韵,邓子新,孙宇辉.氨基糖苷抗生素庆大霉素:基础研究的新进展及应用研究的新潜力[J].生物工程学报,2015,31(6):829-844. DOI: 10.13345/j.cjb.140635.
[8]AygülA. [The importance of efflux systems in antibiotic resistance and efflux pump inhibitors in the management of resistance][J]. Mikrobiyol Bul, 2015,49(2):278-291.
[9]YaoH, ShenZ, WangY, et al. Emergence of a Potent Multidrug Efflux Pump Variant That Enhances Campylobacter Resistance to Multiple Antibiotics[J]. MBio, 2016,7(5)e01543-16.DOI: 10.1128/mBio.01543-16.
[10]WrightGD. The antibiotic resistome: the nexus of chemical and genetic diversity[J]. Nat Rev Microbiol, 2007,5(3):175-186. DOI: 10.1038/nrmicro1614.
[11]AlekshunMN, LevySB. Molecular mechanisms of antibacterial multidrug resistance[J]. Cell, 2007,128(6):1037-1050. DOI: 10.1016/j.cell.2007.03.004.
[12]FosterPL. Stress-induced mutagenesis in bacteria[J]. Crit Rev Biochem Mol Biol, 2007,42(5):373-397. DOI: 10.1080/10409230701648494.
[13]WalshC. Where will new antibiotics come from?[J]. Nat Rev Microbiol, 2003,1:65-70. DOI: 10.1038/nrmicro727.
[14]KorshunovS, ImlayJA. Detection and quantification of superoxide formed within the periplasm of Escherichia coli[J]. J Bacteriol, 2006,188(17):6326-6334. DOI: 10.1128/JB.00554-06.
[15]DwyerDJ, KohanskiMA, CollinsJJ. Role of reactive oxygen species in antibiotic action and resistance[J]. Curr Opin Microbiol, 2009,12(5):482-489. DOI: 10.1016/j.mib.2009.06.018.
[16]ImlayJA. The molecular mechanisms and physiological consequences of oxidative stress: lessons from a model bacterium[J]. Nat Rev Microbiol, 2013,11(7):443-454. DOI: 10.1038/nrmicro3032.
[17]SakaiA, NakanishiM, YoshiyamaK, et al. Impact of reactive oxygen species on spontaneous mutagenesis in Escherichia coli[J]. Genes Cells, 2006,11(7):767-778. DOI: 10.1111/j.1365-2443.2006.00982.x.
[18]ImlayJA. Cellular defenses against superoxide and hydrogen peroxide[J]. Annu Rev Biochem, 2008,77:755-776. DOI: 10.1146/annurev.biochem.77.061606.161055.
[19]李欣,李红玉.病原中的活性氧释放研究进展[J].生态学报,2006,26(7):2382-2386. DOI: 10.3321/j.issn:1000-0933.2006.07.042.
[20]DwyerDJ, BelenkyPA, YangJH, et al. Antibiotics induce redox-related physiological alterations as part of their lethality[J]. Proc Natl Acad Sci U S A, 2014,111(20):E2100-2109. DOI: 10.1073/pnas.1401876111.
[21]FotiJJ, DevadossB, WinklerJA, et al. Oxidation of the guanine nucleotide pool underlies cell death by bactericidal antibiotics[J]. Science, 2012,336(6079):315-319. DOI: 10.1126/science.1219192.
[22]马丽娜,米宏霏,薛云新,等. ROS在细菌耐药及抗生素杀菌中的作用机制[J].遗传,2016,38(10):902-909. DOI: 10.16288/j.yczz.16-157.
[23]KohanskiMA, DwyerDJ, HayeteB, et al. A common mechanism of cellular death induced by bactericidal antibiotics[J]. Cell, 2007,130(5):797-810. DOI: 10.1016/j.cell.2007.06.049.
[24]KohanskiMA, DwyerDJ, CollinsJJ. How antibiotics kill bacteria: from targets to networks[J]. Nat Rev Microbiol, 2010,8(6):423-435. DOI: 10.1038/nrmicro2333.
[25]冯锦芝,姚文晔,刘俊坚,等.铁代谢体系影响抗生素杀菌作用的研究进展[J].中国抗生素杂志,2016,41(8):561-567. DOI: 10.3969/j.issn.1001-8689.2016.08.001.
[26]GrantSS, KaufmannBB, ChandNS, et al. Eradication of bacterial persisters with antibiotic-generated hydroxyl radicals[J]. Proc Natl Acad Sci U S A, 2012,109(30):12147-12152. DOI: 10.1073/pnas.1203735109.
[27]LeeCR, LeeJH, ParkM, et al. Biology of Acinetobacter baumannii: Pathogenesis, Antibiotic Resistance Mechanisms, and Prospective Treatment Options[J]. Front Cell Infect Microbiol, 2017,7:55. DOI: 10.3389/fcimb.2017.00055.
[28]TamaeC, LiuA, KimK, et al. Determination of antibiotic hypersensitivity among 4,000 single-gene-knockout mutants of Escherichia coli[J]. J Bacteriol, 2008,190(17):5981-5988. DOI: 10.1128/JB.01982-07.
[29]GirgisHS, HottesAK, TavazoieS. Genetic architecture of intrinsic antibiotic susceptibility[J]. PLoS One, 2009,4(5):e5629. DOI: 10.1371/journal.pone.0005629.
[30]SchurekKN, MarrAK, TaylorPK, et al. Novel genetic determinants of low-level aminoglycoside resistance in Pseudomonas aeruginosa[J]. Antimicrob Agents Chemother, 2008,52(12):4213-4219. DOI: 10.1128/AAC.00507-08.
[31]张亚妮,段康民.活性氧在细菌耐抗生素机制中的作用[J].中国药理学通报,2010,26(9):1129-1131.
[32]YinR, ZhangD, SongY, et al. Potent DNA damage by polyhalogenated quinones and H2O2 via a metal-independent and Intercalation-enhanced oxidation mechanism[J].Sci Rep,2013,3:1269. DOI: 10.1038/srep01269.
[33]DwyerDJ, KohanskiMA, HayeteB, et al. Gyrase inhibitors induce an oxidative damage cellular death pathway in Escherichia coli[J]. Mol Syst Biol, 2007,3:91. DOI: 10.1038/msb4100135.
[34]PomposielloPJ, DempleB. Redox-operated genetic switches: the SoxR and OxyR transcription factors[J]. Trends Biotechnol, 2001,19(3):109-114.
[35]Ayala-CastroC, SainiA, OuttenFW. Fe-S cluster assembly pathways in bacteria[J]. Microbiol Mol Biol Rev, 2008,72(1):110-125, table of contents. DOI: 10.1128/MMBR.00034-07.
[36]BraunV. Iron uptake by Escherichia coli[J]. Front Biosci, 2003,8:s1409-1421.
[37]FriedbergEC, WalkerGC, SiedeW, et al. DNA repair and mutagenesis[M]. Washington D.C: ASM Press, 2006.
[38]WangX, ZhaoX. Contribution of oxidative damage to antimicrobial lethality[J]. Antimicrob Agents Chemother, 2009,53(4):1395-1402. DOI: 10.1128/AAC.01087-08.
[39]WangJH, SinghR, BenoitM, et al. Sigma S-dependent antioxidant defense protects stationary-phase Escherichia coli against the bactericidal antibiotic gentamicin[J]. Antimicrob Agents Chemother, 2014,58(10):5964-5975. DOI: 10.1128/AAC.03683-14.
[40]WuY, Vuli?M, KerenI, et al. Role of oxidative stress in persister tolerance[J]. Antimicrob Agents Chemother, 2012,56(9):4922-4926. DOI: 10.1128/AAC.00921-12.
[41]ImlayJA. Pathways of oxidative damage[J]. Annu Rev Microbiol, 2003,57:395-418. DOI: 10.1146/annurev.micro.57.030502.090938.
[42]KileyPJ, BeinertH. The role of Fe-S proteins in sensing and regulation in bacteria[J]. Curr Opin Microbiol, 2003,6(2):181-185.
[43]RaiP, WemmerDE, LinnS. Preferential binding and structural distortion by Fe2+ at RGGG-containing DNA sequences correlates with enhanced oxidative cleavage at such sequences[J]. Nucleic Acids Res, 2005,33(2):497-510. DOI: 10.1093/nar/gki192.
[44]HenleES, HanZ, TangN, et al. Sequence-specific DNA cleavage by Fe2+-mediated fenton reactions has possible biological implications[J]. J Biol Chem, 1999,274(2):962-971.
[45]LyleAN, RemusEW, FanAE, et al. Hydrogen peroxide regulates osteopontin expression through activation of transcriptional and translational pathways[J]. J Biol Chem, 2014,289(1):275-285. DOI: 10.1074/jbc.M113.489641.
[46]TintiF, SooryM. Oxidative actions of hydrogen peroxide in human gingival and oral periosteal fibroblasts: responses to glutathione and nicotine, relevant to healing in a redox environment[J]. Redox Biol, 2013,2:36-43. DOI: 10.1016/j.redox.2013.11.008.
[47]ParkS, ImlayJA. High levels of intracellular cysteine promote oxidative DNA damage by driving the fenton reaction[J]. J Bacteriol, 2003,185(6):1942-1950.
[48]LiuY, ImlayJA. Cell death from antibiotics without the involvement of reactive oxygen species[J]. Science, 2013,339(6124):1210-1213. DOI: 10.1126/science.1232751.
[49]KerenI, WuY, InocencioJ, et al. Killing by bactericidal antibiotics does not depend on reactive oxygen species[J]. Science, 2013,339(6124):1213-1216. DOI: 10.1126/science.1232688.
[50]LiGQ, QuanF, QuT, et al. Sublethal vancomycin-induced ROS mediating antibiotic resistance in Staphylococcus aureus[J]. Biosci Rep, 2015,35(6):e00279.DOI: 10.1042/BSR20140167.
[51]LobritzMA, BelenkyP, PorterCB, et al. Antibiotic efficacy is linked to bacterial cellular respiration[J]. Proc Natl Acad Sci U S A, 2015,112(27):8173-8180. DOI: 10.1073/pnas.1509743112.
[52]LiX, FengHQ, PangXY, et al. Mesosome formation is accompanied by hydrogen peroxide accumulation in bacteria during the rifampicin effect[J]. Mol Cell Biochem, 2008,311(1-2):241-247. DOI: 10.1007/s11010-007-9690-4.
[53]XinL, LipengY, JiajuQ, et al. Revisiting the mesosome as a novel site of hydrogen peroxide accumulation in Escherichia coli[J]. Curr Microbiol, 2014,69(4):549-553. DOI: 10.1007/s00284-014-0617-5.
[54]MurataK, KawaiS, MikamiB, et al. Superchannel of bacteria: biological significance and new horizons[J]. Biosci Biotechnol Biochem, 2008,72(2):265-277. DOI: 10.1271/bbb.70635.
[55]LiX, LiH, PangX, et al. Localization changes of endogenous hydrogen peroxide during cell division cycle of Xanthomonas[J]. Mol Cell Biochem, 2007,300(1-2):207-213. DOI: 10.1007/s11010-006-9385-2.
[56]SanthanaRL, HingHL, BaharudinO, et al. Mesosomes are a definite event in antibiotic-treated Staphylococcus aureus ATCC 25923[J]. Trop Biomed, 2007,24(1):105-109.
[57]NairDR, MonteiroJM, MemmiG, et al. Characterization of a novel small molecule that potentiates β-lactam activity against gram-positive and gram-negative pathogens[J].Antimicrob Agents Chemother,2015,59(4):1876-1885. DOI: 10.1128/AAC.04164-14.
[58]MoritaD, SawadaH, OgawaW, et al. Riccardin C derivatives cause cell leakage in Staphylococcus aureus[J]. Biochim Biophys Acta, 2015,1848(10Pt A):2057-2064. DOI: 10.1016/j.bbamem.2015.05.008.
[59]李欣,庞新跃,刘严,等.损伤条件下油菜黄单胞菜豆致病变种内源过氧化氢与间体形成的联系[J].微生物学报,2010,50(7):876-884.
[60]李欣,李鑫玲,庞新跃,等.水稻白叶枯病菌内源过氧化氢在细胞分裂周期中的时空定位变化[J].中国农业科学,2012,45(8):1499-1504. DOI: 10.3864/j.issn.0578-1752.2012.08.005.
[61]FlemingA. On the antibacterial action of cultures of a penicillium, with special reference to their use in the isolation of B. influenzae. 1929[J]. Bull World Health Organ, 2001,79(8):780-790.
[62]LuTK, CollinsJJ. Engineered bacteriophage targeting gene networks as adjuvants for antibiotic therapy[J]. P Natl Acad Sci USA, 2009,106(12):4629-4634.DOI: 10.1073/pnas.0800442106.